Nell’attuale panorama del mondo IT, la containerizzazione e i microservizi rappresentano due tra le tecnologie più rilevanti e rivoluzionarie.
La containerizzazione fa riferimento all’utilizzo di container, che fungono da ambiente operativo autonomo per eseguire applicazioni in modo isolato ma efficiente. I container permettono di “impacchettare” una applicazione con tutte le sue dipendenze, in modo che esso possa funzionare uniformemente in diversi ambienti computing. Kubernetes e Docker sono due esempi di tale approccio.
Dall’altra parte, i microservizi rappresentano un approccio architetturale per lo sviluppo di applicazioni. Un’applicazione basata su microservizi è composta da diversi servizi indipendenti, ognuno dei quali può essere sviluppato, testato, implementato, scalato e gestito in modo indipendente.
Entrambi hanno un impatto fondamentale sulla data science e sulla programmazione, trasformando il modo in cui gli applicativi sono rilasciati e gestiti.
L’importanza della Containerizzazione e dei Microservizi
La containerizzazione offre numerosi vantaggi. Prima di tutto, riduce il tempo e gli sforzi richiesti per il rilascio di nuove applicazioni o aggiornamenti. Questo avviene perché i container offrono un ambiente di esecuzione consistente in cui le applicazioni possono essere sviluppate e testate prima di essere dispiegate.
Inoltre, la containerizzazione riduce l’overhead associato all’esecuzione di molteplici ambienti virtuali su uno stesso sistema fisico, consentendo un utilizzo più efficiente delle risorse hardware disponibili.
I microservizi, d’altro canto, caratterizzati da un’elevata granularità e decoupling, offrono una grande flessibilità, permettendo di sviluppare e distribuire singoli servizi in modo indipendente e scalabile.
Applicazioni pratica
Nella Data Science, la containerizzazione è particolarmente utile per gestire complesse pipeline di analisi dati, le quali spesso coinvolgono un gran numero di tasks interdipendenti. Con l’uso di container, ogni task può essere pacchettizzato con tutte le sue dipendenze e distribuito in maniera efficiente e riproducibile.
Un esempio pratico potrebbe essere l’implementazione di un modello di machine learning. Il codice dell’applicazione, i dati di addestramento, la libreria per l’apprendimento automatico e qualsiasi altro componente richiesto sono racchiusi in un container, che può essere facilmente testato e dispiegato.
Con i microservizi, è possibile suddividere un’applicazione di grandi dimensioni in diverse parti più piccole, ognuna delle quali può essere gestita in modo indipendente. Questo risulta particolarmente utile nell’ambito della data science, dove si può, ad esempio, avere un microservizio dedicato alla raccolta dati, uno al loro processamento, e un altro alla visualizzazione dei risultati.
Conclusione: Advantage e Impatto
La containerizzazione e l’architettura a microservizi rivoluzionano il rilascio di applicazioni semplificando ed automatizzando molte delle attività correlate, migliorando l’efficienza e la velocità di sviluppo e offrendo una maggiore affidabilità degli ambienti di rilascio.
Entrambe le tecnologie anticipano un futuro delle applicazioni software e di data science più agile, flessibile e resiliente, frammentato in servizi altamente specializzati e contenitori facilmente gestibili e distribuibili. Proprio per questo, per ogni data scientist o programmatore, è indispensabile familiarizzare con queste metodologie, che rappresentano non solo il presente, ma soprattutto il futuro dell’IT.